Discrete Dipole Approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment

نویسندگان

  • Constantin Ungureanu
  • Raja Gopal Rayavarapu
  • Srirang Manohar
  • Ton G. van Leeuwen
چکیده

Gold nanorods have interesting optical properties due to surface plasmon resonance effects. A variety of biomedical applications of these particles have been envisaged and feasibilities demonstrated in imaging, sensing and therapy based on the interactions of light with these particles. In order to correctly interpret experimental data, and tailor the nanorods and their environments for optimal use in these applications, simulations of the optical properties of the particles under various conditions are essential. Of the various numerical methods available, the Discrete Dipole Approximation (DDA) approach implemented in the publicly available DDSCAT code, is a powerful method that has proved popular for studying gold nanorods. However, there is as yet no universal agreement on the choice of the number of dipoles for the discretization, on the shape used to represent the nanorods and on the dielectric function of gold required for the simulations. We systematically study the influence of these parameters on simulated results. We find large variations in the position of plasmon resonance peaks, their amplitudes and shapes of the spectra depending on the choice of the parameters. We discuss these in the light of experimental optical extinction spectra of gold nanorods synthesized in our laboratory. While making some recommendations to improve accuracy of the simulation results, we show that much care should be taken and prudence applied before DDA results be used to interpret experimental data and to help characterize nanoparticles synthesized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Analysis of the Optical Properties of Gold Nanoparticles Using DDA Approximation

   This article describes a study, using numerical simulation, of the optical properties of nano particles as a function of their size. Many methods introduced to simulate and calculate the interaction of light and particle, such as Mie analysis, boundary element and finite element methods. The Discrete Dipole Approximation (DDA), wherein a target geometry is modeled as a ...

متن کامل

Analyzing the Optical Properties and Peak Behavior Due to Plasmon Resonance of Silver Cubic-Shape Nanostructures by Means of Discrete Dipole Approximation

In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, waveleng...

متن کامل

Optical properties of gold and aluminium nanoparticles for silicon solar cell applications

The optical properties of metal nanoparticles are explored as a function of lateral size, shape, aspect-ratio and metal type. Simulations based on the discrete dipole approximation are compared with experimental measurements of arrays of metal nanoparticles fabricated by electron-beam lithography. Careful selection of experimental parameters ensures minimization of far-field and near-field coup...

متن کامل

Investigation of extinction spectra of THTS Mn thin films and comparsion with discrete dipole approximation simulation results

In this work, the extinction spectra of the nano-structure of the Tilt Helical and Stair-like Towers of Mn thin films were obtained using discrete dipole approximation (DDA) simulation for both s-and p-polarization at two incident light angles of 10°, and 60° at different azimuthal angles for the there samples with different tilt. Obtained results are compared with the experimental optical exti...

متن کامل

Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles

We studied the accuracy of the discrete dipole approximation (DDA) for simulations of absorption and scattering spectra by gold nanoparticles (spheres, cubes, and rods ranging in size from 10 to 100 nm). We varied the dipole resolution and applied two DDA formulations, employing the standard lattice dispersion relation (LDR) and the relatively new filtered coupled dipoles (FCD) approach. The DD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008